回溯算法团灭排列组合子集问题

回溯算法团灭排列/组合/子集问题

回溯算法团灭排列/组合/子集问题

预计阅读时间:7 分钟

今天就来聊三道考察频率高,而且容易让人搞混的算法问题,分别是求子集(subset),求排列(permutation),求组合(combination)。这几个问题都可以用回溯算法解决。

一、子集

问题很简单,输入一个不包含重复数字的数组,要求算法输出这些数字的所有子集。

1
vector<vector<int>> subsets(vector<int>& nums);

比如输入 nums = [1,2,3],你的算法应输出 8 个子集,包含空集和本身,顺序可以不同:

[ [],[1],[2],[3],[1,3],[2,3],[1,2],[1,2,3] ]

第一个解法是利用数学归纳的思想:假设我现在知道了规模更小的子问题的结果,如何推导出当前问题的结果呢?

具体来说就是,现在让你求 [1,2,3] 的子集,如果你知道了 [1,2] 的子集,是否可以推导出 [1,2,3] 的子集呢?先把 [1,2] 的子集写出来瞅瞅:

[ [],[1],[2],[1,2] ]

你会发现这样一个规律:

subset([1,2,3]) - subset([1,2])

= [3],[1,3],[2,3],[1,2,3]

而这个结果,就是把 sebset([1,2]) 的结果中每个集合再添加上 3。

换句话说,如果 A = subset([1,2]) ,那么:

subset([1,2,3])

= A + [A[i].add(3) for i = 1..len(A)]

这就是一个典型的递归结构嘛,[1,2,3] 的子集可以由 [1,2] 追加得出,[1,2] 的子集可以由 [1] 追加得出,base case 显然就是当输入集合为空集时,输出子集也就是一个空集。

翻译成代码就很容易理解了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
vector<vector<int>> subsets(vector<int>& nums) {
// base case,返回一个空集
if (nums.empty()) return {{}};
// 把最后一个元素拿出来
int n = nums.back();
nums.pop_back();
// 先递归算出前面元素的所有子集
vector<vector<int>> res = subsets(nums);

int size = res.size();
for (int i = 0; i < size; i++) {
// 然后在之前的结果之上追加
res.push_back(res[i]);
res.back().push_back(n);
}
return res;
}

这个问题的时间复杂度计算比较容易坑人。我们之前说的计算递归算法时间复杂度的方法,是找到递归深度,然后乘以每次递归中迭代的次数。对于这个问题,递归深度显然是 N,但我们发现每次递归 for 循环的迭代次数取决于 res 的长度,并不是固定的。

根据刚才的思路,res 的长度应该是每次递归都翻倍,所以说总的迭代次数应该是 2^N。或者不用这么麻烦,你想想一个大小为 N 的集合的子集总共有几个?2^N 个对吧,所以说至少要对 res 添加 2^N 次元素。

那么算法的时间复杂度就是 O(2^N) 吗?还是不对,2^N 个子集是 push_back 添加进 res 的,所以要考虑 push_back 这个操作的效率:

1
2
3
4
5
vector<vector<int>> res = ...
for (int i = 0; i < size; i++) {
res.push_back(res[i]); // O(N)
res.back().push_back(n); // O(1)
}

因为 res[i] 也是一个数组呀,push_back 是把 res[i] copy 一份然后添加到数组的最后,所以一次操作的时间是 O(N)。

综上,总的时间复杂度就是 O(N*2^N),还是比较耗时的。

空间复杂度的话,如果不计算储存返回结果所用的空间的,只需要 O(N) 的递归堆栈空间。如果计算 res 所需的空间,应该是 O(N*2^N)。

第二种通用方法就是回溯算法。旧文「回溯算法详解」写过回溯算法的模板:

1
2
3
4
5
6
7
8
9
result = []
def backtrack(路径, 选择列表):
if 满足结束条件:
result.add(路径)
return
for 选择 in 选择列表:
做选择
backtrack(路径, 选择列表)
撤销选择

只要改造回溯算法的模板就行了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
vector<vector<int>> res;

vector<vector<int>> subsets(vector<int>& nums) {
// 记录走过的路径
vector<int> track;
backtrack(nums, 0, track);
return res;
}

void backtrack(vector<int>& nums, int start, vector<int>& track) {
res.push_back(track);
// 注意 i 从 start 开始递增
for (int i = start; i < nums.size(); i++) {
// 做选择
track.push_back(nums[i]);
// 回溯
backtrack(nums, i + 1, track);
// 撤销选择
track.pop_back();
}
}

可以看见,对 res 的更新是一个前序遍历,也就是说,res 就是树上的所有节点:

图片

二、组合

输入两个数字 n, k,算法输出 [1..n] 中 k 个数字的所有组合。

1
vector<vector<int>> combine(int n, int k);

比如输入 n = 4, k = 2,输出如下结果,顺序无所谓,但是不能包含重复(按照组合的定义,[1,2][2,1] 也算重复):

[
[1,2],
[1,3],
[1,4],
[2,3],
[2,4],
[3,4]
]

这就是典型的回溯算法,k 限制了树的高度,n 限制了树的宽度,直接套我们以前讲过的回溯算法模板框架就行了:

图片

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
vector<vector<int>>res;

vector<vector<int>> combine(int n, int k) {
if (k <= 0 || n <= 0) return res;
vector<int> track;
backtrack(n, k, 1, track);
return res;
}

void backtrack(int n, int k, int start, vector<int>& track) {
// 到达树的底部
if (k == track.size()) {
res.push_back(track);
return;
}
// 注意 i 从 start 开始递增
for (int i = start; i <= n; i++) {
// 做选择
track.push_back(i);
backtrack(n, k, i + 1, track);
// 撤销选择
track.pop_back();
}
}

backtrack 函数和计算子集的差不多,区别在于,更新 res 的地方是树的底端

三、排列

输入一个不包含重复数字的数组 nums,返回这些数字的全部排列。

1
vector<vector<int>> permute(vector<int>& nums);

比如说输入数组 [1,2,3],输出结果应该如下,顺序无所谓,不能有重复:

[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]

回溯算法详解 中就是拿这个问题来解释回溯模板的。这里又列出这个问题,是将「排列」和「组合」这两个回溯算法的代码拿出来对比。

首先画出回溯树来看一看:

图片

我们当时使用 Java 代码写的解法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
List<List<Integer>> res = new LinkedList<>();

/* 主函数,输入一组不重复的数字,返回它们的全排列 */
List<List<Integer>> permute(int[] nums) {
// 记录「路径」
LinkedList<Integer> track = new LinkedList<>();
backtrack(nums, track);
return res;
}

void backtrack(int[] nums, LinkedList<Integer> track) {
// 触发结束条件
if (track.size() == nums.length) {
res.add(new LinkedList(track));
return;
}

for (int i = 0; i < nums.length; i++) {
// 排除不合法的选择
if (track.contains(nums[i]))
continue;
// 做选择
track.add(nums[i]);
// 进入下一层决策树
backtrack(nums, track);
// 取消选择
track.removeLast();
}
}

回溯模板依然没有变,但是根据排列问题和组合问题画出的树来看,排列问题的树比较对称,而组合问题的树越靠右节点越少。

在代码中的体现就是,排列问题每次通过 contains 方法来排除在 track 中已经选择过的数字;而组合问题通过传入一个 start 参数,来排除 start 索引之前的数字。

以上,就是排列组合和子集三个问题的解法,总结一下

子集问题可以利用数学归纳思想,假设已知一个规模较小的问题的结果,思考如何推导出原问题的结果。也可以用回溯算法,要用 start 参数排除已选择的数字。

组合问题利用的是回溯思想,结果可以表示成树结构,我们只要套用回溯算法模板即可,关键点在于要用一个 start 排除已经选择过的数字。

排列问题是回溯思想,也可以表示成树结构套用算法模板,不同之处在于使用 contains 方法排除已经选择的数字,前文有详细分析,这里主要是和组合问题作对比。

对于这三个问题,关键区别在于回溯树的结构,不妨多观察递归树的结构,很自然就可以理解代码的含义了。

------------- 本 文 结 束     感 谢 您 的 阅 读 -------------