经典动态规划:0-1 背包问题

后台天天有人问背包问题,这个问题其实不难啊,如果我们号动态规划系列的十几篇文章你都看过,借助框架,遇到背包问题可以说是手到擒来好吧。无非就是状态 + 选择,也没啥特别之处嘛。

今天就来说一下背包问题吧,就讨论最常说的 0-1 背包问题,简单描述一下吧:

给你一个可装载重量为W的背包和N个物品,每个物品有重量和价值两个属性。其中第i个物品的重量为wt[i],价值为val[i],现在让你用这个背包装物品,最多能装的价值是多少?

举个简单的例子,输入如下:

1
2
3
N = 3, W = 4
wt = [2, 1, 3]
val = [4, 2, 3]

算法返回 6,选择前两件物品装进背包,总重量 3 小于W,可以获得最大价值 6。

题目就是这么简单,一个典型的动态规划问题。这个题目中的物品不可以分割,要么装进包里,要么不装,不能说切成两块装一半。这也许就是 0-1 背包这个名词的来历。

解决这个问题没有什么排序之类巧妙的方法,只能穷举所有可能,根据我们 动态规划套路详解 中的套路,直接走流程就行了。

动规标准套路

看来我得每篇动态规划文章都得重复一遍套路,历史文章中的动态规划问题都是按照下面的套路来的,今天再来手把手演示一下:

第一步****要明确两点,「状态」和「选择」

先说状态,如何才能描述一个问题局面?只要给定几个可选物品和一个背包的容量限制,就形成了一个背包问题,对不对?所以状态有两个,就是「背包的容量」和「可选择的物品」

再说选择,也很容易想到啊,对于每件物品,你能选择什么?选择就是「装进背包」或者「不装进背包」嘛

明白了状态和选择,动态规划问题基本上就解决了,只要往这个框架套就完事儿了:

1
2
3
4
for 状态1 in 状态1的所有取值:
for 状态2 in 状态2的所有取值:
for ...
dp[状态1][状态2][...] = 择优(选择1,选择2...)

PS:此框架出自历史文章 团灭 LeetCode 股票买卖问题

第二步**要明确dp数组的定义**。

dp数组是什么?其实就是描述问题局面的一个数组。换句话说,我们刚才明确问题有什么「状态」,现在需要用dp数组把状态表示出来。

首先看看刚才找到的「状态」,有两个,也就是说我们需要一个二维dp数组,一维表示可选择的物品,一维表示背包的容量。

dp[i][w]的定义如下:对于前i个物品,当前背包的容量为w,这种情况下可以装的最大价值是dp[i][w]

比如说,如果 dp[3][5] = 6,其含义为:对于给定的一系列物品中,若只对前 3 个物品进行选择,当背包容量为 5 时,最多可以装下的价值为 6。

PS:为什么要这么定义?便于状态转移,或者说这就是套路,记下来就行了。建议看一下我们的动态规划系列文章,几种动规套路都被扒得清清楚楚了。

根据这个定义,我们想求的最终答案就是**dp[N][W]。base case 就是dp[0][..] = dp[..][0] = 0**,因为没有物品或者背包没有空间的时候,能装的最大价值就是 0。

细化上面的框架:

1
2
3
4
5
6
7
8
9
10
11
int dp[N+1][W+1]
dp[0][..] = 0
dp[..][0] = 0

for i in [1..N]:
for w in [1..W]:
dp[i][w] = max(
把物品 i 装进背包,
不把物品 i 装进背包
)
return dp[N][W]

第三步****,根据「选择」,思考状态转移的逻辑

简单说就是,上面伪码中「把物品i装进背包」和「不把物品i装进背包」怎么用代码体现出来呢?

这一步要结合对dp数组的定义和我们的算法逻辑来分析:

先重申一下刚才我们的dp数组的定义:

dp[i][w]表示:对于前i个物品,当前背包的容量为w时,这种情况下可以装下的最大价值是dp[i][w]

如果你没有把这第i个物品装入背包,那么很显然,最大价值dp[i][w]应该等于dp[i-1][w]。你不装嘛,那就继承之前的结果。

如果你把这第i个物品装入了背包,那么dp[i][w]应该等于dp[i-1][w-wt[i-1]] + val[i-1]

首先,由于i是从 1 开始的,所以对valwt的取值是i-1

dp[i-1][w-wt[i-1]]也很好理解:你如果想装第i个物品,你怎么计算这时候的最大价值?换句话说,在装第i个物品的前提下,背包能装的最大价值是多少?

显然,你应该寻求剩余重量w-wt[i-1]限制下能装的最大价值,加上第i个物品的价值val[i-1],这就是装第i个物品的前提下,背包可以装的最大价值。

综上就是两种选择,我们都已经分析完毕,也就是写出来了状态转移方程,可以进一步细化代码:

1
2
3
4
5
6
7
for i in [1..N]:
for w in [1..W]:
dp[i][w] = max(
dp[i-1][w],
dp[i-1][w - wt[i-1]] + val[i-1]
)
return dp[N][W]

最后一步****,把伪码翻译成代码,处理一些边界情况

我用 C++ 写的代码,把上面的思路完全翻译了一遍,并且处理了w - wt[i-1]可能小于 0 导致数组索引越界的问题:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
int knapsack(int W, int N, vector<int>& wt, vector<int>& val) {
// vector 全填入 0,base case 已初始化
vector<vector<int>> dp(N + 1, vector<int>(W + 1, 0));
for (int i = 1; i <= N; i++) {
for (int w = 1; w <= W; w++) {
if (w - wt[i-1] < 0) {
// 当前背包容量装不下,只能选择不装入背包
dp[i][w] = dp[i - 1][w];
} else {
// 装入或者不装入背包,择优
dp[i][w] = max(dp[i - 1][w - wt[i-1]] + val[i-1],
dp[i - 1][w]);
}
}
}

return dp[N][W];
}

现在你看这个解法代码,是不是感觉非常简单,就是把我们刚才分析的思路原封不动翻译了一下而已。

所以说,明确了动态规划的套路,思路就显得行云流水,非常自然就出答案了。

至此,背包问题就解决了。相比而言,我觉得这是比较简单的动态规划问题,因为状态转移的推导逻辑比较容易想到,基本上你明确了dp数组的定义,就可以理所当然地确定状态转移了。

l

经典动态规划:高楼扔鸡蛋

手把手刷动态规划 25个

预计阅读时间:7 分钟

今天要聊一个很经典的算法问题,若干层楼,若干个鸡蛋,让你算出最少的尝试次数,找到鸡蛋恰好摔不碎的那层楼。国内大厂以及谷歌脸书面试都经常考察这道题,只不过他们觉得扔鸡蛋太浪费,改成扔杯子,扔破碗什么的。

具体的问题等会再说,但是这道题的解法技巧很多,光动态规划就好几种效率不同的思路,最后还有一种极其高效数学解法。秉承咱们号一贯的作风,拒绝奇技淫巧,拒绝过于诡异的技巧,因为这些技巧无法举一反三,学了不太划算。

下面就来用我们一直强调的动态规划通用思路来研究一下这道题。

一、解析题目

题目是这样:你面前有一栋从 1 到NN层的楼,然后给你K个鸡蛋(K至少为 1)。现在确定这栋楼存在楼层0 <= F <= N,在这层楼将鸡蛋扔下去,鸡蛋恰好没摔碎(高于F的楼层都会碎,低于F的楼层都不会碎)。现在问你,最坏情况下,你至少要扔几次鸡蛋,才能确定这个楼层F呢?

PS:F 可以为 0,比如说鸡蛋在 1 层都能摔碎,那么 F = 0。

也就是让你找摔不碎鸡蛋的最高楼层F,但什么叫「最坏情况」下「至少」要扔几次呢?我们分别举个例子就明白了。

比方说现在先不管鸡蛋个数的限制,有 7 层楼,你怎么去找鸡蛋恰好摔碎的那层楼?

最原始的方式就是线性扫描:我先在 1 楼扔一下,没碎,我再去 2 楼扔一下,没碎,我再去 3 楼……

以这种策略,最坏情况应该就是我试到第 7 层鸡蛋也没碎(F = 7),也就是我扔了 7 次鸡蛋。

现在你应该理解什么叫做「最坏情况」下了,鸡蛋破碎一定发生在搜索区间穷尽时,不会说你在第 1 层摔一下鸡蛋就碎了,这是你运气好,不是最坏情况。

现在再来理解一下什么叫「至少」要扔几次。依然不考虑鸡蛋个数限制,同样是 7 层楼,我们可以优化策略。

最好的策略是使用二分查找思路,我先去第(1 + 7) / 2 = 4层扔一下:

如果碎了说明F小于 4,我就去第(1 + 3) / 2 = 2层试……

如果没碎说明F大于等于 4,我就去第(5 + 7) / 2 = 6层试……

以这种策略,最坏情况应该是试到第 7 层鸡蛋还没碎(F = 7),或者鸡蛋一直碎到第 1 层(F = 0)。然而无论那种最坏情况,只需要试log7向上取整等于 3 次,比刚才的 7 次要少,这就是所谓的至少要扔几次。

PS:这有点像 Big O 表示法计算算法的复杂度。

实际上,如果不限制鸡蛋个数的话,二分思路显然可以得到最少尝试的次数,但问题是,现在给你了鸡蛋个数的限制K,直接使用二分思路就不行了

比如说只给你 1 个鸡蛋,7 层楼,你敢用二分吗?你直接去第 4 层扔一下,如果鸡蛋没碎还好,但如果碎了你就没有鸡蛋继续测试了,无法确定鸡蛋恰好摔不碎的楼层F了。这种情况下只能用线性扫描的方法,算法返回结果应该是 7。

有的读者也许会有这种想法:二分查找排除楼层的速度无疑是最快的,那干脆先用二分查找,等到只剩 1 个鸡蛋的时候再执行线性扫描,这样得到的结果是不是就是最少的扔鸡蛋次数呢?

很遗憾,并不是,比如说把楼层变高一些,100 层,给你 2 个鸡蛋,你在 50 层扔一下,碎了,那就只能线性扫描 1~49 层了,最坏情况下要扔 50 次。

如果不要「二分」,变成「五分」「十分」都会大幅减少最坏情况下的尝试次数。比方说第一个鸡蛋每隔十层楼扔,在哪里碎了第二个鸡蛋一个个线性扫描,总共不会超过 20 次。

最优解其实是 14 次。最优策略非常多,而且并没有什么规律可言。

说了这么多废话,就是确保大家理解了题目的意思,而且认识到这个题目确实复杂,就连我们手算都不容易,如何用算法解决呢?

二、思路分析

对动态规划问题,直接套我们以前多次强调的框架即可:这个问题有什么「状态」,有什么「选择」,然后穷举。

**「状态」很明显,就是当前拥有的鸡蛋数K和需要测试的楼层数N**。随着测试的进行,鸡蛋个数可能减少,楼层的搜索范围会减小,这就是状态的变化。

「选择」其实就是去选择哪层楼扔鸡蛋。回顾刚才的线性扫描和二分思路,二分查找每次选择到楼层区间的中间去扔鸡蛋,而线性扫描选择一层层向上测试。不同的选择会造成状态的转移。

现在明确了「状态」和「选择」,动态规划的基本思路就形成了:肯定是个二维的dp数组或者带有两个状态参数的dp函数来表示状态转移;外加一个 for 循环来遍历所有选择,择最优的选择更新结果 :

1
2
3
4
5
6
7
# 当前状态为 (K 个鸡蛋,N 层楼)
# 返回这个状态下的最优结果
def dp(K, N):
int res
for 1 <= i <= N:
res = min(res, 这次在第 i 层楼扔鸡蛋)
return res

这段伪码还没有展示递归和状态转移,不过大致的算法框架已经完成了。

我们在第i层楼扔了鸡蛋之后,可能出现两种情况:鸡蛋碎了,鸡蛋没碎。注意,这时候状态转移就来了

如果鸡蛋碎了,那么鸡蛋的个数K应该减一,搜索的楼层区间应该从[1..N]变为[1..i-1]i-1层楼;

如果鸡蛋没碎,那么鸡蛋的个数K不变,搜索的楼层区间应该从 [1..N]变为[i+1..N]N-i层楼。

图片

PS:细心的读者可能会问,在第i层楼扔鸡蛋如果没碎,楼层的搜索区间缩小至上面的楼层,是不是应该包含第i层楼呀?不必,因为已经包含了。开头说了 F 是可以等于 0 的,向上递归后,第i层楼其实就相当于第 0 层,可以被取到,所以说并没有错误。

因为我们要求的是最坏情况下扔鸡蛋的次数,所以鸡蛋在第i层楼碎没碎,取决于那种情况的结果更大

1
2
3
4
5
6
7
8
9
10
def dp(K, N):
for 1 <= i <= N:
# 最坏情况下的最少扔鸡蛋次数
res = min(res,
max(
dp(K - 1, i - 1), # 碎
dp(K, N - i) # 没碎
) + 1 # 在第 i 楼扔了一次
)
return res

递归的 base case 很容易理解:当楼层数N等于 0 时,显然不需要扔鸡蛋;当鸡蛋数K为 1 时,显然只能线性扫描所有楼层:

1
2
3
4
def dp(K, N):
if K == 1: return N
if N == 0: return 0
...

至此,其实这道题就解决了!只要添加一个备忘录消除重叠子问题即可:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
def superEggDrop(K: int, N: int):

memo = dict()
def dp(K, N) -> int:
# base case
if K == 1: return N
if N == 0: return 0
# 避免重复计算
if (K, N) in memo:
return memo[(K, N)]

res = float('INF')
# 穷举所有可能的选择
for i in range(1, N + 1):
res = min(res,
max(
dp(K, N - i),
dp(K - 1, i - 1)
) + 1
)
# 记入备忘录
memo[(K, N)] = res
return res

return dp(K, N)

这个算法的时间复杂度是多少呢?动态规划算法的时间复杂度就是子问题个数 × 函数本身的复杂度

函数本身的复杂度就是忽略递归部分的复杂度,这里dp函数中有一个 for 循环,所以函数本身的复杂度是 O(N)。

子问题个数也就是不同状态组合的总数,显然是两个状态的乘积,也就是 O(KN)。

所以算法的总时间复杂度是 O(K*N^2), 空间复杂度为子问题个数,即 O(KN)。

三、疑难解答

这个问题很复杂,但是算法代码却十分简洁,这就是动态规划的特性,穷举加备忘录/DP table 优化,真的没啥新意。

首先,有读者可能不理解代码中为什么用一个 for 循环遍历楼层[1..N],也许会把这个逻辑和之前探讨的线性扫描混为一谈。其实不是的,这只是在做一次「选择」

比方说你有 2 个鸡蛋,面对 10 层楼,你得拿一个鸡蛋去某一层楼扔对吧?那选择去哪一层楼扔呢?不知道,那就把这 10 层楼全试一遍。至于鸡蛋碎没碎,下次怎么选择不用你操心,有正确的状态转移,递归会算出每个选择的代价,我们取最优的那个就是最优解。

其实,这个问题还有更好的解法,比如修改代码中的 for 循环为二分搜索,可以将时间复杂度降为 O(KNlogN);再改进动态规划解法可以进一步降为 O(KN);使用数学方法解决,时间复杂度达到最优 O(K*logN),空间复杂度达到 O(1)。

二分的解法也有点误导性,你很可能以为它跟我们之前讨论的二分思路扔鸡蛋有关系,实际上没有半毛钱关系。能用二分搜索是因为状态转移方程的函数图像具有单调性,可以快速找到最小值。

这里就不展开以上解法了,有兴趣的读者可以点击「阅读原文」查看。

我觉得吧,我们这种解法就够了:找状态,做选择,足够清晰易懂,可流程化,可举一反三。掌握这套框架学有余力的话,二分查找的优化应该可以看懂,之后的优化也就随缘吧。

l

经典动态规划:戳气球问题

今天我们要聊的这道题「Burst Balloon」和之前我们写过的那篇 经典动态规划:高楼扔鸡蛋问题 分析过的高楼扔鸡蛋问题类似,知名度很高,但难度确实也很大。因此 labuladong 公众号就给这道题赐个座,来看一看这道题目到底有多难。

它是 LeetCode 第 312 题,题目如下:

图片

首先必须要说明,这个题目的状态转移方程真的比较巧妙,所以说如果你看了题目之后完全没有思路恰恰是正常的。虽然最优答案不容易想出来,但基本的思路分析是我们应该力求做到的。所以本文会先分析一下常规思路,然后再引入动态规划解法。

一、回溯思路

先来顺一下解决这种问题的套路:

我们前文多次强调过,很显然只要涉及求最值,没有任何奇技淫巧,一定是穷举所有可能的结果,然后对比得出最值

所以说,只要遇到求最值的算法问题,首先要思考的就是:如何穷举出所有可能的结果?

穷举主要有两种算法,就是回溯算法和动态规划,前者就是暴力穷举,而后者是根据状态转移方程推导「状态」。

如何将我们的扎气球问题转化成回溯算法呢?这个应该不难想到的,我们其实就是想穷举戳气球的顺序,不同的戳气球顺序可能得到不同的分数,我们需要把所有可能的分数中最高的那个找出来,对吧。

那么,这不就是一个「全排列」问题嘛,我们前文 回溯算法框架套路详解 中有全排列算法的详解和代码,其实只要稍微改一下逻辑即可,伪码思路如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
int res = Integer.MIN_VALUE;
/* 输入一组气球,返回戳破它们获得的最大分数 */
int maxCoins(int[] nums) {
backtrack(nums, 0);
return res;
}
/* 回溯算法的伪码解法 */
void backtrack(int[] nums, int socre) {
if (nums 为空) {
res = max(res, score);
return;
}
for (int i = 0; i < nums.length; i++) {
int point = nums[i-1] * nums[i] * nums[i+1];
int temp = nums[i];
// 做选择
在 nums 中删除元素 nums[i]
// 递归回溯
backtrack(nums, score + point);
// 撤销选择
将 temp 还原到 nums[i]
}
}

回溯算法就是这么简单粗暴,但是相应的,算法的效率非常低。这个解法等同于全排列,所以时间复杂度是阶乘级别,非常高,题目说了nums的大小n最多为 500,所以回溯算法肯定是不能通过所有测试用例的。

二、动态规划思路

这个动态规划问题和我们之前的动态规划系列文章相比有什么特别之处?为什么它比较难呢?

原因在于,这个问题中我们每戳破一个气球nums[i],得到的分数和该气球相邻的气球nums[i-1]nums[i+1]是有相关性的

我们前文 动态规划套路框架详解 说过运用动态规划算法的一个重要条件:子问题必须独立。所以对于这个戳气球问题,如果想用动态规划,必须巧妙地定义dp数组的含义,避免子问题产生相关性,才能推出合理的状态转移方程。

如何定义dp数组呢,这里需要对问题进行一个简单地转化。题目说可以认为nums[-1] = nums[n] = 1,那么我们先直接把这两个边界加进去,形成一个新的数组points

1
2
3
4
5
6
7
8
9
10
int maxCoins(int[] nums) {
int n = nums.length;
// 两端加入两个虚拟气球
int[] points = new int[n + 2];
points[0] = points[n + 1] = 1;
for (int i = 1; i <= n; i++) {
points[i] = nums[i - 1];
}
// ...
}

现在气球的索引变成了从1npoints[0]points[n+1]可以认为是两个「虚拟气球」。

那么我们可以改变问题:在一排气球points中,请你戳破气球0和气球n+1之间的所有气球(不包括0n+1),使得最终只剩下气球0和气球n+1两个气球,最多能够得到多少分

现在可以定义dp数组的含义:

**dp[i][j] = x表示,戳破气球i和气球j之间(开区间,不包括ij)的所有气球,可以获得的最高分数为x**。

那么根据这个定义,题目要求的结果就是dp[0][n+1]的值,而 base case 就是dp[i][j] = 0,其中0 <= i <= n+1, j <= i+1,因为这种情况下,开区间(i, j)中间根本没有气球可以戳。

1
2
// base case 已经都被初始化为 0
int[][] dp = new int[n + 2][n + 2];

现在我们要根据这个dp数组来推导状态转移方程了,根据我们前文的套路,所谓的推导「状态转移方程」,实际上就是在思考怎么「做选择」,也就是这道题目最有技巧的部分:

不就是想求戳破气球i和气球j之间的最高分数吗,如果「正向思考」,就只能写出前文的回溯算法;我们需要「反向思考」,想一想气球i和气球j之间最后一个被戳破的气球可能是哪一个

其实气球i和气球j之间的所有气球都可能是最后被戳破的那一个,不防假设为k。回顾动态规划的套路,这里其实已经找到了「状态」和「选择」:ij就是两个「状态」,最后戳破的那个气球k就是「选择」。

根据刚才对dp数组的定义,如果最后一个戳破气球kdp[i][j]的值应该为

1
2
dp[i][j] = dp[i][k] + dp[k][j] 
+ points[i]*points[k]*points[j]

你不是要最后戳破气球k吗?那得先把开区间(i, k)的气球都戳破,再把开区间(k, j)的气球都戳破;最后剩下的气球k,相邻的就是气球i和气球j,这时候戳破k的话得到的分数就是points[i]*points[k]*points[j]

那么戳破开区间(i, k)和开区间(k, j)的气球最多能得到的分数是多少呢?嘿嘿,就是dp[i][k]dp[k][j],这恰好就是我们对dp数组的定义嘛!

图片

结合这个图,就能体会出dp数组定义的巧妙了。由于是开区间,dp[i][k]dp[k][j]不会影响气球k;而戳破气球k时,旁边相邻的就是气球i和气球j了,最后还会剩下气球i和气球j,这也恰好满足了dp数组开区间的定义。

那么,对于一组给定的ij,我们只要穷举i < k < j的所有气球k,选择得分最高的作为dp[i][j]的值即可,这也就是状态转移方程:

1
2
3
4
5
6
7
8
// 最后戳破的气球是哪个?
for (int k = i + 1; k < j; k++) {
// 择优做选择,使得 dp[i][j] 最大
dp[i][j] = Math.max(
dp[i][j],
dp[i][k] + dp[k][j] + points[i]*points[j]*points[k]
);
}

写出状态转移方程就完成这道题的一大半了,但是还有问题:对于k的穷举仅仅是在做「选择」,但是应该如何穷举「状态」ij呢?

1
2
3
4
5
6
7
8
for (int i = ...; ; )
for (int j = ...; ; )
for (int k = i + 1; k < j; k++) {
dp[i][j] = Math.max(
dp[i][j],
dp[i][k] + dp[k][j] + points[i]*points[j]*points[k]
);
return dp[0][n+1];

三、写出代码

关于「状态」的穷举,最重要的一点就是:状态转移所依赖的状态必须被提前计算出来

拿这道题举例,dp[i][j]所依赖的状态是dp[i][k]dp[k][j],那么我们必须保证:在计算dp[i][j]时,dp[i][k]dp[k][j]已经被计算出来了(其中i < k < j)。

那么应该如何安排ij的遍历顺序,来提供上述的保证呢?我们前文 动态规划答疑篇 写过处理这种问题的一个鸡贼技巧:根据 base case 和最终状态进行推导

PS:最终状态就是指题目要求的结果,对于这道题目也就是dp[0][n+1]

我们先把 base case 和最终的状态在 DP table 上画出来:

图片

对于任一dp[i][j],我们希望所有dp[i][k]dp[k][j]已经被计算,画在图上就是这种情况:

图片

那么,为了达到这个要求,可以有两种遍历方法,要么斜着遍历,要么从下到上从左到右遍历:

图片

斜着遍历有一点难写,所以一般我们就从下往上遍历,下面看完整代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
int maxCoins(int[] nums) {
int n = nums.length;
// 添加两侧的虚拟气球
int[] points = new int[n + 2];
points[0] = points[n + 1] = 1;
for (int i = 1; i <= n; i++) {
points[i] = nums[i - 1];
}
// base case 已经都被初始化为 0
int[][] dp = new int[n + 2][n + 2];
// 开始状态转移
// i 应该从下往上
for (int i = n; i >= 0; i--) {
// j 应该从左往右
for (int j = i + 1; j < n + 2; j++) {
// 最后戳破的气球是哪个?
for (int k = i + 1; k < j; k++) {
// 择优做选择
dp[i][j] = Math.max(
dp[i][j],
dp[i][k] + dp[k][j] + points[i]*points[j]*points[k]
);
}
}
}
return dp[0][n + 1];
}

至此,这道题目就完全解决了,十分巧妙,但也不是那么难,对吧?

关键在于dp数组的定义,需要避免子问题互相影响,所以我们反向思考,将dp[i][j]的定义设为开区间,考虑最后戳破的气球是哪一个,以此构建了状态转移方程。

对于如何穷举「状态」,我们使用了小技巧,通过 base case 和最终状态推导出i,j的遍历方向,保证正确的状态转移。

l

经典动态规划:高楼扔鸡蛋(进阶篇)

手把手刷动态规划 25个

预计阅读时间:9 分钟

我们在 上篇文章 聊了高楼扔鸡蛋问题,讲了一种效率不是很高,但是较为容易理解的动态规划解法。后台很多读者问如何更高效地解决这个问题,今天就谈两种思路,来优化一下这个问题,分别是二分查找优化和重新定义状态转移。

如果还不知道高楼扔鸡蛋问题的读者可以看下 经典动态规划:高楼扔鸡蛋那篇文章详解了题目的含义和基本的动态规划解题思路,请确保理解前文,因为今天的优化都是基于这个基本解法的

二分搜索的优化思路也许是我们可以尽力尝试写出的,而修改状态转移的解法可能是不容易想到的,可以借此见识一下动态规划算法设计的玄妙,当做思维拓展。

一、二分搜索优化

之前提到过这个解法,核心是因为状态转移方程的单调性,这里可以具体展开看看。

题目要求最坏情况下至少需要扔几次鸡蛋才能测出鸡蛋恰好摔不碎的楼层F。首先简述一下原始动态规划的思路:

1、暴力穷举尝试在所有楼层1 <= i <= N扔鸡蛋,每次选择尝试次数最少的那一层;

2、每次扔鸡蛋有两种可能,要么碎,要么没碎;

3、如果鸡蛋碎了,F应该在第i层下面,否则,F应该在第i层上面;

4、鸡蛋是碎了还是没碎,取决于哪种情况下尝试次数更多,因为我们想求的是最坏情况下的结果。

核心的状态转移代码是这段:

1
2
3
4
5
6
7
8
9
10
11
12
# 当前状态为 K 个鸡蛋,面对 N 层楼
# 返回这个状态下的最优结果
def dp(K, N):
for 1 <= i <= N:
# 最坏情况下的最少扔鸡蛋次数
res = min(res,
max(
dp(K - 1, i - 1), # 碎
dp(K, N - i) # 没碎
) + 1 # 在第 i 楼扔了一次
)
return

这个 for 循环就是下面这个状态转移方程的具体代码实现:

图片

如果能够理解这个状态转移方程,那么就很容易理解二分查找的优化思路。

首先我们根据dp(K, N)数组的定义(有K个鸡蛋面对N层楼,最少需要扔 dp(K, N) 次),很容易知道K固定时,这个函数随着N的增加一定是单调递增的,无论你策略多聪明,楼层增加的话,测试次数一定要增加。

那么注意dp(K - 1, i - 1)dp(K, N - i)这两个函数,其中i是从 1 到N单增的,如果我们固定KN把这两个函数看做关于i的函数,前者随着i的增加应该也是单调递增的,而后者随着i的增加应该是单调递减的

图片

这时候求二者的较大值,再求这些最大值之中的最小值,其实就是求这两条直线交点,也就是红色折线的最低点嘛。

我们前文 二分搜索只能用来查找元素吗?讲过,二分查找的运用很广泛,形如下面这种形式的 for 循环代码:

1
2
3
4
for (int i = 0; i < n; i++) {
if (isOK(i))
return i;
}

都很有可能可以运用二分查找来优化线性搜索的复杂度,回顾这两个dp函数的曲线,我们要找的最低点其实就是这种情况:

1
2
3
4
for (int i = 1; i <= N; i++) {
if (dp(K - 1, i - 1) == dp(K, N - i))
return dp(K, N - i);
}

熟悉二分搜索的同学肯定敏感地想到了,这不就是相当于求 Valley(山谷)值嘛,可以用二分查找来快速寻找这个点的,直接看代码吧,整体的思路还是一样,只是加快了搜索速度:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
def superEggDrop(self, K: int, N: int) -> int:

memo = dict()
def dp(K, N):
if K == 1: return N
if N == 0: return 0
if (K, N) in memo:
return memo[(K, N)]

# for 1 <= i <= N:
# res = min(res,
# max(
# dp(K - 1, i - 1),
# dp(K, N - i)
# ) + 1
# )

res = float('INF')
# 用二分搜索代替线性搜索
lo, hi = 1, N
while lo <= hi:
mid = (lo + hi) // 2
broken = dp(K - 1, mid - 1) # 碎
not_broken = dp(K, N - mid) # 没碎
# res = min(max(碎,没碎) + 1)
if broken > not_broken:
hi = mid - 1
res = min(res, broken + 1)
else:
lo = mid + 1
res = min(res, not_broken + 1)

memo[(K, N)] = res
return res

return dp(K, N)

这个算法的时间复杂度是多少呢?动态规划算法的时间复杂度就是子问题个数 × 函数本身的复杂度

函数本身的复杂度就是忽略递归部分的复杂度,这里dp函数中用了一个二分搜索,所以函数本身的复杂度是 O(logN)。

子问题个数也就是不同状态组合的总数,显然是两个状态的乘积,也就是 O(KN)。

所以算法的总时间复杂度是 O(KNlogN), 空间复杂度 O(KN)。效率上比之前的算法 O(KN^2) 要高效不少。

二、重写状态转移

前文 动态规划:不同的定义产生不同的解法 就提过,找动态规划的状态转移本就是见仁见智,比较玄学的事情。不同的状态定义可以衍生出不同的解法,其解法和复杂程度都可能有巨大差异。这里就是一个很好的例子。

再回顾一下我们之前定义的dp数组含义:

1
2
3
def dp(k, n) -> int
# 当前状态为 k 个鸡蛋,面对 n 层楼
# 返回这个状态下最少的扔鸡蛋次数

用 dp 数组表示的话也是一样的:

1
2
3
dp[k][n] = m
# 当前状态为 k 个鸡蛋,面对 n 层楼
# 这个状态下最少的扔鸡蛋次数为 m

按照这个定义,就是确定当前的鸡蛋个数和面对的楼层数,就知道最小扔鸡蛋次数。最终我们想要的答案就是dp(K, N)的结果。

这种思路下,肯定要穷举所有可能的扔法的,用二分搜索优化也只是做了「剪枝」,减小了搜索空间,但本质思路没有变,只不过是更聪明的穷举。

现在,我们稍微修改dp数组的定义,确定当前的鸡蛋个数和最多允许的扔鸡蛋次数,就知道能够确定F的最高楼层数

有点绕口,具体来说是这个意思:

1
2
3
4
5
6
7
8
9
dp[k][m] = n
# 当前有 k 个鸡蛋,可以尝试扔 m 次鸡蛋
# 这个状态下,最坏情况下最多能确切测试一栋 n 层的楼

# 比如说 dp[1][7] = 7 表示:
# 现在有 1 个鸡蛋,允许你扔 7 次;
# 这个状态下最多给你 7 层楼,
# 使得你可以确定楼层 F 使得鸡蛋恰好摔不碎
# (一层一层线性探查嘛)

这其实就是我们原始思路的一个「反向」版本,我们先不管这种思路的状态转移怎么写,先来思考一下这种定义之下,最终想求的答案是什么?

我们最终要求的其实是扔鸡蛋次数m,但是这时候m在状态之中而不是dp数组的结果,可以这样处理:

1
2
3
4
5
6
7
8
9
int superEggDrop(int K, int N) {

int m = 0;
while (dp[K][m] < N) {
m++;
// 状态转移...
}
return m;
}

题目不是给你K鸡蛋,N层楼,让你求最坏情况下最少的测试次数m 吗?while循环结束的条件是dp[K][m] == N,也就是给你K个鸡蛋,允许测试m次,最坏情况下最多能测试N层楼

注意看这两段描述,是完全一样的!所以说这样组织代码是正确的,关键就是状态转移方程怎么找呢?还得从我们原始的思路开始讲。之前的解法配了这样图帮助大家理解状态转移思路:

图片

这个图描述的仅仅是某一个楼层i,原始解法还得线性或者二分扫描所有楼层,要求最大值、最小值。但是现在这种dp定义根本不需要这些了,基于下面两个事实:

1、无论你在哪层楼扔鸡蛋,鸡蛋只可能摔碎或者没摔碎,碎了的话就测楼下,没碎的话就测楼上

2、无论你上楼还是下楼,总的楼层数 = 楼上的楼层数 + 楼下的楼层数 + 1(当前这层楼)

根据这个特点,可以写出下面的状态转移方程:

1
dp[k][m] = dp[k][m-1] + dp[k-1][m-1] + 1

dp[k][m - 1]就是楼上的楼层数,因为鸡蛋个数k不变,也就是鸡蛋没碎,扔鸡蛋次数m减一;

dp[k - 1][m - 1]就是楼下的楼层数,因为鸡蛋个数k减一,也就是鸡蛋碎了,同时扔鸡蛋次数m减一。

PS:这个m为什么要减一而不是加一?之前定义得很清楚,这个m是一个允许的次数上界,而不是扔了几次。

图片

至此,整个思路就完成了,只要把状态转移方程填进框架即可:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
int superEggDrop(int K, int N) {
// m 最多不会超过 N 次(线性扫描)
int[][] dp = new int[K + 1][N + 1];
// base case:
// dp[0][..] = 0
// dp[..][0] = 0
// Java 默认初始化数组都为 0
int m = 0;
while (dp[K][m] < N) {
m++;
for (int k = 1; k <= K; k++)
dp[k][m] = dp[k][m - 1] + dp[k - 1][m - 1] + 1;
}
return m;
}

如果你还觉得这段代码有点难以理解,其实它就等同于这样写:

1
2
3
for (int m = 1; dp[K][m] < N; m++)
for (int k = 1; k <= K; k++)
dp[k][m] = dp[k][m - 1] + dp[k - 1][m - 1] + 1;

看到这种代码形式就熟悉多了吧,因为我们要求的不是dp数组里的值,而是某个符合条件的索引m,所以用while循环来找到这个m而已。

这个算法的时间复杂度是多少?很明显就是两个嵌套循环的复杂度 O(KN)。

另外注意到dp[m][k]转移只和左边和左上的两个状态有关,所以很容易优化成一维dp数组,这里就不写了。

三、进一步思考

再往下就要用一些数学方法了,不具体展开,就简单提一下思路吧。

在刚才的思路之上,注意函数dp(m, k)是随着m单增的,因为鸡蛋个数k不变时,允许的测试次数越多,可测试的楼层就越高。

这里又可以借助二分搜索算法快速逼近dp[K][m] == N这个终止条件,时间复杂度进一步下降为 O(KlogN),我们可以设g(k,m)等于……

算了算了,打住吧。我觉得我们能够写出 O(KNlogN) 的二分优化算法就行了,后面的这些解法呢,听个响鼓个掌就行了,把欲望限制在能力的范围之内才能拥有快乐!

不过可以肯定的是,根据二分搜索代替线性扫描 m 的取值,代码的大致框架肯定是修改穷举 m 的 for 循环:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
// 把线性搜索改成二分搜索
// for (int m = 1; dp[K][m] < N; m++)
int lo = 1, hi = N;
while (lo < hi) {
int mid = (lo + hi) / 2;
if (... < N) {
lo = ...
} else {
hi = ...
}

for (int k = 1; k <= K; k++)
// 状态转移方程
}

简单总结一下吧,第一个二分优化是利用了dp函数的单调性,用二分查找技巧快速搜索答案;第二种优化是巧妙地修改了状态转移方程,简化了求解了流程,但相应的,解题逻辑比较难以想到;后续还可以用一些数学方法和二分搜索进一步优化第二种解法,不过看了看镜子中的发量,算了。

本文终,希望对你有一点启发。

l

经典面试题:如何寻找最⻓回文子串

预计阅读时间:5 分钟

回文串是面试常常遇到的问题(虽然问题本身没啥意义),本文就告诉你回文串问题的核心思想是什么。

首先,明确一下什:回文串就是正着读和反着读都一样的字符串

比如说字符串abaabba都是回文串,因为它们对称,反过来还是和本身一样。反之,字符串abac就不是回文串。

可以看到回文串的的长度可能是奇数,也可能是偶数,这就添加了回文串问题的难度,解决该类问题的核心是双指针。下面就通过一道最长回文子串的问题来具体理解一下回文串问题:

图片

1
string longestPalindrome(string s) {}

一、思考

对于这个问题,我们首先应该思考的是,给一个字符串s,如何在s中找到一个回文子串?

有一个很有趣的思路:既然回文串是一个正着反着读都一样的字符串,那么如果我们把s反转,称为s',然后在ss'中寻找最长公共子串,这样应该就能找到最长回文子串。

比如说字符串abacd,反过来是dcaba,它俩的最长公共子串是aba,也就是最长回文子串。

但是这个思路是错误的,比如说字符串aacxycaa,反转之后是aacyxcaa,最长公共子串是aac,但是最长回文子串应该是aa

虽然这个思路不正确,但是这种把问题转化为其他形式的思考方式是非常值得提倡的

下面,就来说一下正确的思路,如何使用双指针。

寻找回文串的问题核心思想是:从中间开始向两边扩散来判断回文串。对于最长回文子串,就是这个意思:

1
2
3
for 0 <= i < len(s):
找到以 s[i] 为中心的回文串
更新答案

但是呢,我们刚才也说了,回文串的长度可能是奇数也可能是偶数,如果是abba这种情况,没有一个中心字符,上面的算法就没辙了。所以我们可以修改一下:

1
2
3
4
for 0 <= i < len(s):
找到以 s[i] 为中心的回文串
找到以 s[i] 和 s[i+1] 为中心的回文串
更新答案

PS:读者可能发现这里的索引会越界,等会会处理。

二、代码实现

按照上面的思路,先要实现一个函数来寻找最长回文串,这个函数是有点技巧的:

图片

为什么要传入两个指针lr呢?因为这样实现可以同时处理回文串长度为奇数和偶数的情况

1
2
3
4
5
6
for 0 <= i < len(s):
# 找到以 s[i] 为中心的回文串
palindrome(s, i, i)
# 找到以 s[i] 和 s[i+1] 为中心的回文串
palindrome(s, i, i + 1)
更新答案

下面看下longestPalindrome的完整代码:

图片

至此,这道最长回文子串的问题就解决了,时间复杂度 O(N^2),空间复杂度 O(1)。

值得一提的是,这个问题可以用动态规划方法解决,时间复杂度一样,但是空间复杂度至少要 O(N^2) 来存储 DP table。这道题是少有的动态规划非最优解法的问题。

另外,这个问题还有一个巧妙的解法,时间复杂度只需要 O(N),不过该解法比较复杂,我个人认为没必要掌握。该算法的名字叫 Manacher’s Algorithm(马拉车算法),有兴趣的读者可以自行搜索一下。

l